

Spectrum Sustainability, a Satellite Operator Approach

August 2025

George Setakis (BEng ,MSc)
Head of Transmission Planning & Operations

BACKGROUND

- **□** 22 Years Operational Experience
- ☐ Geographical Coverage within 3 Continents (Europe, M.East and S.Africa)
- **☐** Spectrum Management and Monitoring of 3.2GHz (Ku and Ka)
- **☐** Number of Transponders : 90
- **☐** Spectrum Monitoring System
- **☐** Spacecraft Telemetry

RADIO FREQUENCY INTERFERENCE USER CASES

Type-1a: User Defective Operations- (ie Bad Cross Polarization Isolation)

Type-1b: User Defective Operations- (ie Antenna Mispointing (ASI))

Type-2a: Gateway Defective Operations- (ie HPA Intermodulation Noise)

Type-2b: Gateway Defective Operations- (ie HPA ALC Noise)

Type-3: Unauthorized & Malicious transmissions (ie Jamming)

<u>Type-4</u>: Space segment Defective operations – Internal Systems (ie Payload switching,

calibration, etc)

<u>Type-5</u>: Space segment Defective operations – External Systems (ie Fly By etc)

Type-6: Terrestrial Interference

Type-7: Uncharacterized source of RFI

RADIO FREQUENCY INTERFERENCE USER CASES— RFI Characterization

- User Segment
- Gateway Segment
- Unauthorized & Malicious
- Space Segment
- Terrestrial User Downlink
- Undefined RFI

- **☐** Factors affecting the RFI characterization:
- Transponders Operational Load & Configuration
- Number of active networks
- **❖ Number of Registered & Unregistered Earth Stations**
- External Factors
- Seasonal Conditions

Bridging worlds

RADIO FREQUENCY INTERFERENCE USER CASES- RFI Characterization

RADIO FREQUENCY INTERFERENCE MANAGEMENT

- > Spectrum Monitoring & Telemetry Systems
- > Earth Stations Registration, Verification and Testing
- > Coordination with the Adjacent Satellite Operators
- > Coordination with the Local Regulators
- > Interference Geolocation System
- > In orbit backup capacity

RADIO FREQUENCY INTERFERENCE EVOLVING CHALLENGES

- **☐** Multiple Constellations (GEO,MEO,LEO,VLEO,HEO etc)
- Multiple Frequencies (Terrestrial and Satellite Spectrum Evolution)
- □ Different Type of Payloads (Transparent, DTP, OBP, etc)
- **☐** Multiple Devices (D2D,D2H,etc)
- □ Different Type of Services (5G/6G-NTN,etc)
- New Protocols and Ecosystems (3GPP,etc)
- **☐** Multiple Traffic Profiles (Mobility,etc)
- **☐** Dynamic Service Coverage (Mobility,etc)
- ☐ Compatibility with Legacy Systems (Waveforms, Access Schemes, etc)

RADIO FREQUENCY INTERFERENCE MANAGEMENT EVOLUTION

- **Earth Stations Database, UNIFIED MANAGEMENT SYSTEM**
- Adjacent Satellite Operators, UNIFIED MANAGEMENT SYSTEM
- > Local Regulators,
- Interference Geolocation System, UNIFIED MANAGEMENT SYSTEM (Space & Ground)
- Spectrum Monitoring Systems (Next Generation-SDR and AI)
- Automated Alarms Notification System, AI (Preventive RFI Detection)
- Automated RFI Recovery System, AI (RFI Mitigation)
- Interference Mitigation Techniques, User Domain (SDR and AI)

Thank you